Integration by Trigonometric Method (tangent secant)



0 comments
Integration by Trigonometric Method (sine cosine) has been discussed in the previous entry. In this entry, we will discuss about trigonometric method when the integrand, f (x)  is a product of  tan x and sec x.

How to evaluate  ∫ tanm x secn dx   ?

1.) Power of sec is even n = even no.(and m = even no.)
  • Split off a factor of sec2 x
  • Use identity, substitute sec2 x = 1 + tan2 x
  • Let u = tan x
eeeeeeExamples:  ∫ tan6 x sec4 dx

2.) Power of tan is odd n = odd no. (and m = odd no.)
  • Split off a factor of sec x tan x
  • Use identity, substitute tan2 x = sec2 x -1
  • Let u = sec x
eeeeeeExamples:  ∫ tan5 x sec9 dx

3.) If power of sec is even and power of tan is odd
  • Use either method (1) or (2) but it is easier to convert the term with the smallest power.
eeeeeeExamples:  ∫ tan3 x sec4 dx

0 comments:

Post a Comment

newer post older post