Use trigonometric method when the integrand, f (x) is a product of sin x and cos x or tan x and sec x. In this entry, we will discuss about sine cosine. Tangent secant will be discuss in the next entry.
How to evaluate ∫ sinm x cosn x dx ?
∫ sin3 x cos2 x dx
2.) Power of cos is odd : n = odd no. (and m = even no.)
∫ sin2 x cos5 x dx
3.) Both powers are odd
How to evaluate ∫ sinm x cosn x dx ?
1.) Power of sin is odd : m = odd no. (and n = even no.)
- Split off a factor of sin x
- Use identity, substitute sin2 x = 1 - cos2 x
- Let u = cos x
∫ sin3 x cos2 x dx
2.) Power of cos is odd : n = odd no. (and m = even no.)
- Split off a factor of sin x
- Use identity, substitute sin2 x = 1 - cos2 x
- Let u = cos x
∫ sin2 x cos5 x dx
3.) Both powers are odd
- Use either method (1) or (2) but it is easier to convert the term with the smallest power.
- Use half-angle identities
eeeeeeExamples: ∫ sin2 x cos2 x dx, ∫ sin4 x dx, ∫ sin2 x dx
Click here for examples.
0 comments:
Post a Comment