Integration by Trigonometric Method (sine cosine)



0 comments
Use trigonometric method when the integrand, f (x)  is a product of sin x and cos or tan x and sec x. In this entry, we will discuss about sine cosine. Tangent secant will be discuss in the next entry.

How to evaluate  ∫ sinm x cosn dx ? 

1.) Power of sin is odd : m = odd no. (and n = even no.)
  • Split off a factor of sin x
  • Use identity, substitute sin2 x = 1 - cos2 x
  • Let u = cos x
eeeeeeExamples:  ∫ sin5 x cos2 dx ∫ sin5 x dx,  
                             ∫ sin3 x cos2 dx 

2.) Power of cos is odd n = odd no. (and m = even no.)

  • Split off a factor of sin x
  • Use identity, substitute sin2 x = 1 - cos2 x
  • Let u = cos x
eeeeeeExamples: ∫ sin6 x cos3 dx, ∫ cos3 dx 
                            ∫ sin2 x cos5 dx

3.) Both powers are odd
  • Use either method (1) or (2) but it is easier to convert the term with the smallest power.
4.) Both powers are even
  • Use half-angle identities

eeeeeeExamples: ∫ sin2 x cos2 dx, ∫ sin4 dx ∫ sin2 x dx

Click here for examples.

0 comments:

Post a Comment

newer post older post